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We develop a new efficient simulation scheme for sampling two families of tilted stable distributions: exponen-

tial tilted stable (ETS) and gamma tilted stable (GTS) distributions. Our scheme is based on two-dimensional

single rejection. For the ETS family, its complexity is uniformly bounded over all ranges of parameters. This

new algorithm outperforms all existing schemes. In particular, it is more efficient than the well-known dou-

ble rejection scheme, which is the only algorithm with uniformly bounded complexity that we can find in

the current literature. Beside the ETS family, our scheme is also flexible to be further extended for generat-

ing the GTS family, which cannot easily be done by extending the double rejection scheme. Our algorithms

are straightforward to implement, and numerical experiments and tests are conducted to demonstrate the

accuracy and efficiency.
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1 INTRODUCTION

The family of positive stable distributions, which was introduced by Lévy [1925], is an important
mathematical tool for capturing heavy tails of observations from reality, such as financial time se-
ries of price returns. A series of influential work by Mandelbrot [1961, 1963a, b] had demonstrated
its importance for potential applications in finance and economics. However, one crucial problem,
as later pointed by many scholars, is its infinite moments, which would be especially problematic
for pricing assets such as options. To deal with this issue, the tail of a positive stable distribution
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should be tilted (or tempered); see discussions in Carr and Wu [2003] and Wu [2006]. A very pop-
ular version of the tilted stable distribution is the so-called exponentially tilted stable (ETS)

distribution, which was initially proposed by Tweedie [1984] and Hougaard [1986]. It plays a key
role in mathematical statistics, as a model for randomness used by Bayesians, and in economic
models [Devroye 2009]. Furthermore, the family of ETS distributions has become a fundamen-
tal component to be used to construct many useful stochastic processes, which have numerous
applications in finance and many other fields. For example, ETS-driven non-Gaussian Ornstein-

Uhlenbeck processes are used for modelling stochastic volatilities of asset prices and contagion risk
processes (see Andrieu et al. [2010]; Barndorff-Nielsen and Shephard [2002, 2003]; Qu et al. [2019,
2021]; Todorov [2015]). More recently, ETS-driven Lévy subordinators have been adopted for mod-
eling the stochastic-time clocks in a series of time-changed models proposed by Li and Linetsky
[2013, 2014, 2015] and Mendoza-Arriaga and Linetsky [2014, 2016]. In addition, ETS distributions
as key members of infinitely divisible distributions are closely connected with characteristic ker-
nels, which play an import role in machine learning applications (see Nishiyama and Fukumizu
[2016]).

The simulation design for sampling ETS distributions without bias has recently received atten-
tion in the literature. The most widely used and trivial algorithm probably is the simple stable

rejection (SSR) scheme, which is developed by a simple combination of the well known Zolotarev’s

integral representation [Zolotarev 1966] and an acceptance-rejection (A/R) scheme (see Brix
[1999]). Hofert [2011a] suggested a fast rejection (FR) algorithm to enhance the SSR scheme.
However, the complexities1 of SSR and FR are unbounded, which obviously limits their applica-
bility, as they would become extremely inefficient for some parameter choices. To overcome this
problem, Devroye [2009] developed a novel scheme based on double rejection (DR) such that
the complexity is uniformly bounded. Alternatively, in this article, we design a new scheme for
ETS distributions based on two-dimensional single rejection (SR).2 The complexity of our SR
scheme is also uniformly bounded, and remarkably, it outperforms the DR scheme for all ranges of
parameters. More precisely, the complexity of our SR scheme is roughly bounded by 4.2154 over
all parameters, which is smaller than the one for the DR scheme. Furthermore, we can easily ex-
tend our scheme for sampling gamma tilted stable (GTS) distributions, which cannot easily be
done by extending the DR scheme since the R distribution suggested in Devroye [2009] has been
replaced by other distribution for GTS. The GTS distribution was first introduced by Barndorff-
Nielsen and Shephard [2001] for modeling stochastic volatility of financial time series. The first
simulation algorithm was just developed recently by Favaro et al. [2015], which is based on the de-
composition for the GTS. Since our algorithm for the GTS does not depend on the ETS simulation
scheme, it is much easier to set up and implement than the one in Favaro et al. [2015].

The article is structured as follows. In Section 2, we provide preliminaries for the posi-
tive stable distribution, exponential tilted stable (ETS) distribution, introduce the general
two-dimensional SR framework, and develop several simulation schemes for sampling ETS
distributions. In Section 3, we analyze the performances of several proposed algorithms with
regard to different choices of tilting and stability parameters, then, by optimally combining these
schemes, we propose a super efficient uniformly bounded scheme to sample ETS variables over
the whole range of stability and tilting parameters. In Section 4, we extend the simulation idea

1The complexity of an algorithm is the expected number of iterations before halting (see Law [2015, Ch. 8]). In particular

for the A/R methodology, its complexity is exactly the associated A/R constant.
2This idea originates from the approach of distributional decomposition and transformation adopted by Dassios et al.

[2018], where they tailored efficient simulation algorithms for some special ETS classes (see also Dassios et al. [2020] for

this approach).
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from ETS distributions to GTS distributions. In Section 5, extensive numerical experiments for
our algorithms, as well as the associated comparisons with other schemes, are carried out and
reported in detail. Section 6 draws a brief conclusion for this article.

2 PRELIMINARIES

2.1 ETS Distributions

A positive stable random variable Sα with the stability index α ∈ (0, 1) has the Laplace transform

E

[
e−vSα

]
= e−vα

, v ∈ R+. (1)

The density function of Sα has the well-known Zolotarev’s integral representation [Zolotarev 1986],

fα (s ) =
1

π

π∫
0

α

1 − α B (u)
1

1−α s−
1

1−α e−B (u )
1

1−α s−
α

1−α

du, s ∈ R+, (2)

where B (u) is defined as

B (u) :=
sinα (αu) sin1−α ((1 − α )u)

sinu
, u ∈ [0,π ].

The associated ETS random variable Sα,λ is defined through the exponentially tilting distribution
of Sα with tilting parameter λ ∈ R+. The Laplace transform of Sα,λ therefore is

E

[
e−vSα ,λ

]
= eλα−(λ+v )α

, (3)

and the density function of Sα,λ is given by

fα,λ (s ) = eλα−λs fα (s ) =

π∫
0

f (s,u)du, (4)

where f (s,u) is the bivariate density function of (S,U ) in (s,u) on [0,∞) × [0,π ]—that is,

f (s,u) =
αeλα

(1 − α )π
B (u)

1
1−α s−

1
1−α exp

(
−B (u)

1
1−α s−

α

1−α − λs
)
. (5)

This Sα,λ cannot be easily simulated directly due to the Zolotarev’s integral representation (2).
However, we can use our two-dimensional A/R scheme to sample (S,U ) and return S to sample
Sα,λ instead.

Remark 2.1. Other works in the literature may use an alternative parameterization for the ETS
distribution with Laplace transform

E

[
e−vSα ,λ,θ

]
= eθ [λα−(λ+v )α ],

where θ ∈ R+ is a new parameter. Without loss of generality, we set θ = 1 in this work, since

Sα,λ,θ
D
= θ

1
α S

α,λθ
1
α

(see Devroye [2009, p. 12]).
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2.2 Two-Dimensional SR Scheme

Several competing algorithms for simulating ETS distributions have been proposed in the litera-
ture (i.e., the SSR scheme [Brix 1999], FR scheme [Hofert 2011a], and DR scheme [Devroye 2009].
These algorithms are unbiased and can produce very accurate samples. However, each of them
has its own advantages and limitations. For the SSR scheme, since the expected complexity is ex-
ponentially increasing, the algorithm has a very poor acceptance rate for a large value of tilting
parameter λ. For the FR scheme, it works well for a small value of α , but its complexity is of or-
der O (λα ), which is clearly unbounded. For the DR scheme, although the complexity is uniformly
bounded, the upper bound is still large. In particular, when α is close to 0, the simulation becomes
much less efficient. Comparing with the SSR scheme and the FR scheme, the DR scheme is more
difficult for a practitioner to implement, as the procedure is rather complicated. Hence, it is of
great interest to develop a simpler and more efficient algorithm with lower uniformly bounded
complexity for all α ∈ (0, 1) and λ ∈ R+, and this is the aim of our work.

Given the density function of Sα,λ in (4) with the joint density function f (s,u) of a bivariate
variable (S,U ) in (5), we can use the two-dimensional A/R scheme to sample (S,U ) by choosing
an appropriate bivariate envelope (S ′,U ′) with density д(s,u). Therefore, we can use the following
general simulation framework, Algorithm 2.1, to sample the associated marginal variate S .

ALGORITHM 2.1: Two-Dimensional SR Framework

(1) set C = sup
s,u

{
f (s,u)/д(s,u)

}
(2) repeat{

(3) sample (S,U ) with density д(s,u), V ∼ U (0, 1)

(4) if (V ≤ f (S,U )
Cд (S,U ) ) break

(5) }

(6) return S

The expected complexity, which stands for the expected number of iterations before halting, of
this two-dimensional SR scheme is the corresponding A/R constant C in Algorithm 2.1. Hence,if
we can find an appropriate bivariate envelope with a lower and uniformly bounded C , then this
method is more suitable than the DR method used by Devroye [2009], as only one rejection proce-
dure is involved within the entire simulation instead of two.

3 SIMULATION SCHEME FOR ETS DISTRIBUTION

Based on the two-dimensional SR framework in Algorithm 2.1, we design an efficient simulation
algorithm to sample the ETS distributions with uniformly bounded complexity. First of all, let us

define Erf(x ) := 2√
π

∫ x

0
e−t 2

dt as the error function, Γ(x ) :=
∫ ∞

0
tx−1e−t dt as the gamma function,

and denote N (μ,σ 2, lb = 0, ub = π )3 as the truncated normal distribution with mean μ ∈ R and
variance σ 2 ∈ R+ within the domain [0,π ]. The details of the new simulation scheme for ETS
distributions is provided in Algorithm 3.1.

Proof. According to (2) and (4), for

X = λSα,λ , (6)

3 The abbreviation “lb”stands for the lower bound, and “ub”stands for the upper bound.
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ALGORITHM 3.1: Two-Dimensional SR Algorithm for Sα,λ

(1) set R = Erf (
√
α (1 − α )λαπ 2/2), C1 =

Γ(α λα )eα λ
α −1

(α λα )λα

(
α

1−α + αλ
α
)λα (1−α )+1

,

C2 =
Γ((1−α )λα+1)e (1−α )λα

((1−a)λα )(1−α )λα , C3 =
Γ(α λα+1)eα λ

α −1 (α λα )−α λ
α

√
2π α (1−α )λα (1+1/[(1−α )λα ])−1−(1−α )λα ,

C4 =
Γ((1−α )λα+1)e (1−α )λα

√
2π α (1−α )λα ((1−α )λα )(1−α )λα

(2) if (C1 = min {C1, C2, C3, C4}) {

(3) repeat {

(4) sample U ∼ U[0,π ], X ∼ Γ(αλα , 1), V ∼ U[0, 1]; set S = X/λ

(5) if

(
V ≤ αeλ

α
Γ(α λα )

1−α B (U )
1

1−α λ
α

1−α X−
α

1−α
−α λα

e−B (U )
1

1−α λ
α

1−α X −
α

1−α /C1

)
break

(6) }

(7) }

(8) if (C2 = min {C1, C2, C3, C4}){
(9) repeat{

(10) sample U ∼ U[0,π ], Z ∼ Γ
(
(1 − α )λα + 1, 1

)
, V ∼ U[0, 1]; set S = B (U )

1
α Z−

1−α

α

(11) if
(
V ≤ eλα

Γ((1 − α )λα + 1)Z−(1−α )λα

e−λB (U )
1
α Z−

1−α
α /C2

)
break

(12) }

(13) }

(14) if (C3 = min {C1, C2, C3, C4}){
(15) repeat{

(16) sample U ∼ N
(
μ = 0,σ 2 = [α (1 − α )λα ]−1, lb = 0, ub = π

)
(17) sample X ∼ Γ(αλα , 1), V ∼ U[0, 1]; set S = X/λ

(18) if
��
�V ≤

Rαeλ
α

Γ(α λα )λ
α

1−α B (U )
1

1−α

C3 (1−α )
√

2π α (1−α )λα X
α

1−α
+α λα e

−
(
λB (u )

1
α X −1

) α
1−α
+

α (1−α )λα
U

2

2 ��
	 break

(19) }

(20) }

(21) if (C4 = min {C1, C2, C3, C4}){
(22) repeat{

(23) sample U ∼ N
(
μ = 0,σ 2 = [α (1 − α )λα ]−1 , lb = 0, ub = π

)
(24) sample Z ∼ Γ

(
(1 − α )λα + 1, 1

)
, V ∼ U[0, 1]; set S = B (U )

1
α Z−

1−α

α

(25) if

(
V ≤ Reλ

α
Γ((1−α )λα+1)

C4

√
2π α (1−α )λα Z (1−α )λα

e−λB (U )
1
α Z−

1−α
α +

α (1−α )λα
U

2

2

)
break

(26) }

(27) }

(28) return S

the density of the random variable X is specified by

fX (x ) =
1

π

π∫
0

αeλα

1 − α B (u)
1

1−α λ
α

1−α x−
1

1−α e−B (u )
1

1−α λ
α

1−α x−
α

1−α −x du, x ∈ R+,

which is the marginal density of the bivariate variable (X ,U ) on [0,∞) × [0,π ] with density

f (x ,u) =
αeλα

π (1 − α )
B (u)

1
1−α λ

α

1−α x−
1

1−α exp
(
−B (u)

1
1−α λ

α

1−α x−
α

1−α − x
)
. (7)
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To sample Sα,λ , first we sample (X ,U ) by applying the two-dimensional SR scheme in (2.1), and
then return

Sα,λ = X/λ.

To simulate (X ,U ) with density (7), we could choose a gamma-uniform bivariate envelope (X ′,U ′)
on [0,∞) × [0,π ] with density

д(x ,u) =
1

π

1

Γ(m)
xm−1e−x , (8)

for somem ∈ R+. Given the density function f (x ,u) for (X ,U ) in (7) and д(x ,u) for (X ′,U ′) in (8),
we have

f (x ,u)

д(x ,u)
=

αeλα

Γ(m)

1 − α B (u)
1

1−α λ
α

1−α x−
α

1−α
−m exp

(
−B (u)

1
1−α λ

α

1−α x−
α

1−α

)

≤ αeλα

Γ(m)

1 − α B (u)
1

1−α λ
α

1−α

⎡⎢⎢⎢⎢⎣
α

1−α
B (u)

1
1−α λ

α

1−α

α
1−α
+m

⎤⎥⎥⎥⎥⎦
− (1−α )m+α

α

exp
��
�−B (u)

1
1−α λ

α

1−α

⎡⎢⎢⎢⎢⎣
αB (u)

1
1−α λ

α

1−α

α + (1 − α )m

⎤⎥⎥⎥⎥⎦
−1��
	

=

( α

1 − α

)−m (1−α )
α

λ−m Γ(m)
( α

1 − α +m
) m (1−α )+α

α

e−
m (1−α )+α

α
+λα

B (u)−
m

α

≤
( α

1 − α

)−m (1−α )
α

λ−m Γ(m)
( α

1 − α +m
) m (1−α )+α

α

e−
m (1−α )+α

α
+λα

B (0)−
m

α

=

( α

1 − α

)−m (1−α )
α

λ−m Γ(m)
( α

1 − α +m
) m (1−α )+α

α

e−
m (1−α )+α

α
+λα

[
(1 − α )1−ααα

]−m

α

= C1 (α , λ;m),

where B (u) is a monotone increasing function with

min
0≤u≤∞

{B (u)} = B (0) = (1 − α )1−ααα . (9)

The A/R constant C1 (α , λ;m) can be further minimized overm. The optimal valuem∗ satisfies

α

1 − αψ
(0) (m∗) + ln

( α

1 − α +m
∗
)
= ln

(
α

1
1−α λ

α

1−α

)
, forψ (0) (m) =

dΓ(m)

dm
. (10)

Hence, by approximating the LHS of (10), the optimal ratem∗ for the gamma-distributed envelope
is chosen by settingm∗ = αλα . The A/R decision therefore follows

V ≤ f (X ′,U ′)

C1 (α , λ)д(X ′,U ′)
,

with

C1 (α , λ) = C1 (α , λ;αλα ) = (αλα )−λα

eα λα−1Γ (αλα )
( α

1 − α + αλ
α
)λα (1−α )+1

, (11)

where C1 (α , λ) is the associated A/R constant to sample (X ,U ) via a gamma-uniform bivariate
envelope (X ′,U ′). Instead of this gamma-uniform bivariate envelope, one could use a gamma and
truncated-normal bivariate envelope (X̄ , Ū ) on [0,∞) × [0,π ] with associated density of the form

h(x ,u) =
xα λα−1e−x

Γ (αλα )

√
2α (1 − α )λα /

√
π

Erf
(
π
√
α (1 − α )λα /2

) e− α (1−α )λα
u

2

2 , (12)
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to implement the two-dimensional SR scheme. We consider a new envelope
(
X̄ , Ū

)
such that

X̄ ∼ Γ (αλα , 1) , Ū ∼ N
(
μ = 0, σ 2 =

1

α (1 − α )λα
, lb = 0, ub = π

)
,

which is a truncated-normal random variable with mean μ = 0 and variance σ 2 = 1
α (1−α )λα within

the domain [0,π ]. Given the joint density of (X ,U ) in (7) and the joint density of
(
X̄ , Ū

)
in (12),

first, by maximizing f (x ,u)/д(x ,u) with respect to x , we have

f (x ,u)

h(x ,u)
≤

Erf
(
π
√
α (1 − α )λα /2

)
αeλα

Γ(αλα )

(1 − α )
√

2πα (1 − α )λα
λ−α λα

B (u)−λα

e
α (1−α )λα

u
2

2

×
(
1 + (1 − α )λα

)1+(1−α )λα

e−(1+(1−α )λα ) .

According to Devroye [2009], we have the inequality

B (u)−λα ≤ B (0)−λα

e−
α (1−α )λα

u
2

2 =
[
αα (1 − α )1−α

]−λα

e−
α (1−α )λα

u
2

2 . (13)

Hence, by (13), we then have

f (x ,u)

h(x ,u)
≤

Erf
(
π
√
α (1 − α )λα /2

)
Γ(αλα + 1)e−1+α λα

(αλα )−α λα

(1 − α )−1−(1−α )λα

√
2πα (1 − α )λα

(
1

λα + (1 − α )
)−1−(1−α )λα

≤ Γ(αλα + 1)e−1+α λα

(αλα )−α λα

√
2πα (1 − α )λα

(
1 +

1

(1 − α )λα

)1+(1−α )λα

= C3 (α , λ), (14)

whereC3 (α , λ) is the associated A/R constant to sample (X ,U ) via a gamma and truncated-normal
bivariate envelope (X̄ , Ū ). Given these two methodologies, one could set Sα,λ = X/λ to obtain the
realization of Sα,λ once X has been generated.

Besides X = λSα,λ , we could use an alternative transformation to sample Sα,λ by setting

Z = B (U )
1

1−α S
− α

1−α

α,λ
. (15)

According to (5), by changing the variables of the joint distribution function from (S,U ) to (Z ,U ),
the bivariate density function of (Z ,U ) in (z,u) on [0,∞) × [0,π ] is of the form

f (z,u) =
eλα

π
exp

(
−z − λB (u)

1
α z−

1−α

α

)
. (16)

To sample Sα,λ , we could sample (Z ,U ) first and then return

Sα,λ = B (U )
1
α Z−

1−α

α .

To simulate (Z ,U ) with density (16), we choose an envelope (Z ′,U ′) on [0,∞) × [0,π ] with joint
density function

д(z,u) =
1

π

zre−z

Γ(r + 1)
.

According to (9), we have

f (z,u)

д(z,u)
≤ eλα

Γ(r + 1)z−r exp
(
−λα (1 − α )

1−α

α z−
1−α

α

)

≤
(

αr

(1 − α )λ

) r α

1−α

e−
r α

1−α
+λα

Γ(r + 1)
[
(1 − α )α

α

1−α

]−r
= C2 (α , λ; r ),
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where C2 (α , λ; r ) can be minimized over r . The optimal value r ∗ satisfies

ψ (0) (r ∗ + 1) =
α

1 − α ln �
�
λ(1 − α )

1
α

r ∗
�
	 , forψ (0) (r ) =

dΓ(r )

dr
. (17)

By approximating the LHS of (17), the optimal rate r ∗ is chosen by setting r ∗ = (1 − α )λα . Hence,
the associated A/R constant with r ∗ is given by

C2 (α , λ) = C2

(
α , λ; (1 − α )λα

)
= Γ

(
(1 − α )λα + 1

)
e (1−α )λα

((1 − α )λα )−(1−α )λα

, (18)

where C2 (α , λ) is the associated A/R constant to sample (Z ,U ) via a gamma-uniform bivariate
envelope (Z ′,U ′). Similarly, one could also consider a gamma and truncated-normal bivariate en-

velope
(
Z̄ , Ū

)
for (Z ,U ) on [0,∞) × [0,π ] with density (16) such that

Z̄ ∼ Γ
(
(1 − α )λα + 1, 1

)
, Ū ∼ N

(
μ = 0, σ 2 =

1

α (1 − α )λα
, lb = 0, ub = π

)
.

The joint density is given as

h(z,u) =
z (1−α )λα

e−z

Γ((1 − α )λα + 1)

√
2α (1 − α )λα /

√
π

Erf
(
π
√
α (1 − α )λα /2

) e− α (1−α )λα
u

2

2 .

Then, by maximizing f (z,u)/h(z,u) with respect to z and applying inequality (13), we have

f (z,u)

h(z,u)
=

Erf
(
π
√
α (1 − α )λα /2

)
eλα

Γ((1 − α )λα + 1)√
2πα (1 − α )λα

z−(1−α )λα

exp

(
−λB (u)

1
α z−

1−α

α +
α (1 − α )λαu2

2

)

≤
Erf

(
π
√
α (1 − α )λα /2

)
e (1−α )λα

Γ((1 − α )λα + 1)√
2πα (1 − α )λα

λ−α (1−α )λα

αα λα

B (u)−λα

e
α (1−α )λα

u
2

2

≤
Erf

(
π
√
α (1 − α )λα /2

)
e (1−α )λα

Γ((1 − α )λα + 1)√
2πα (1 − α )λα

(1 − α )−(1−α )λα

λ−α (1−α )λα

≤ Γ((1 − α )λα + 1)√
2πα (1 − α )λα

((1 − α )λα )−(1−α )λα

e (1−α )λα

= C4 (α , λ), (19)

whereC4 (α , λ) is the associated A/R constant to sample (Z ,U ) via a gamma and truncated-normal

bivariate envelope (Z̄ , Ū ). Given these two methodologies, one could set Sα,λ = B (U )
1
α Z−

1−α

α to
obtain the realization of Sα,λ once X has been generated.

When specifying the input of (α , λ), to sample Sα,λ , these four two-dimensional SR schemes will
lead to different expected complexities, namelyC1 (α , λ),C2 (α , λ),C3 (α , λ),C4 (α , λ). Therefore, the
most efficient strategy to sample Sα,λ is to choose the one with the smallest highest acceptance
rate, to implement the corresponding two-dimensional SR procedure, which leads to Algorithm 3.1.
And the overall complexity therefore would be formidable by C (α , λ), where

C (α , λ) = min
i=1,2,3,4

{Ci (α , λ) : (α , λ) ∈ (0, 1) × (0,∞)}. (20)

�

Given the complexity C (α , λ) in (20) for Algorithm 3.1, we conclude the following result.
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Theorem 3.1. The complexityC (α , λ) in (20) for Algorithm 3.1 is uniformly bounded. In particular,

we have

sup
α ∈(0,1),λ≥0

C (α , λ) ≤ 4.2154.

Proof. According to Corollary 1.2 in Batir [2008], the following inequality,

Γ(x + 1) <
√

2πxxe−x

√
x +

1

2
,

holds for x ≥ 0, and we then have the following results:

C1 (α , λ) <
√

2παλα + π

(
1 +

1

(1 − α )λα

)
= C̄1 (α , λ),

C2 (α , λ) <
√

2π (1 − α )λα + π = C̄2 (α , λ),

C3 (α , λ) <

√
1

1 − α +
1

2α (1 − α )λα

(
1 +

1

(1 − α )λα

)
= C̄3 (α , λ),

C4 (α , λ) <

√
1

α
+

1

2α (1 − α )λα
= C̄4 (α , λ).

Hence, for any combination of (α , λ) ∈ (0, 1) × (0,∞), we have

C (α , λ) = min
i=1,2,3,4

{Ci (α , λ) : (α , λ) ∈ (0, 1) × (0,∞)}

< min
i=1,2,3,4

{C̄i (α , λ) : (α , λ) ∈ (0, 1) × (0,∞)}

= C̄ (α , λ). (21)

To prove C (α , λ) is uniformly bounded over (α , λ) ∈ (0, 1) × (0,∞), it suffices to prove C̄ (α , λ) is
uniformly bounded over (α , λ) ∈ (0, 1) × (0,∞). We notice that the following inequalities hold:

min

{√
2παλα + π ,

√
1

1 − α +
1

2α (1 − α )λα

}
≤

√
1

1 − α + π ,

min

{√
2π (1 − α )λα + π ,

√
1

α
+

1

2α (1 − α )λα

}
≤

√
1

α
+ π ,

for any arbitrary (α , λ) ∈ (0, 1) × (0,∞),4 which indicate that

min{C̄1 (α , λ), C̄3 (α , λ)} ≤
√

1

1 − α + π
(
1 +

1

(1 − α )λα

)
,

min{C̄2 (α , λ), C̄4 (α , λ)} ≤
√

1

α
+ π .

Hence, we have

C̄ (α , λ) ≤ min
⎧⎪⎨⎪⎩C̄2 (α , λ),

√
1

α
+ π ,

√
1

1 − α + π
(
1 +

1

(1 − α )λα

)⎫⎪⎬⎪⎭ . (22)

4The supreme value of the function defined by the minimum of an increasing and decreasing function is at the point when

the two functions meet.
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19:10 Y. Qu et al.

Note that since C̄2 (α , λ) goes to
√

3π when bothα , λ → 0, this C̄2 (α , λ) in (22) will prevent explosion
when both α , λ → 0.

First, for the case α ∈ [ 1
2 , 1), since

√
1
α
+ π is decreasing and bounded, we have

C̄ (α , λ) ≤
√

1

α
+ π ≤

√
2 + π ≈ 2.2675.

For the case α ∈ (0, 1
2 ), we have

C̄ (α , λ) ≤ min
⎧⎪⎨⎪⎩
√

2π (1 − α )λα + π ,

√
1

1 − α + π
(
1 +

1

(1 − α )λα

)⎫⎪⎬⎪⎭
≤ min

{√
2πλα + π ,

√
2 + π

(
1 +

2

λα

)}

≤ max
(α,λ)∈(0,1)×(0,∞)

{
min

{√
2πλα + π ,

√
2 + π

(
1 +

2

λα

)}}
≈ 4.2154,

where this supreme value is obtained at λα ≈ 2.3281—that is, when
√

2πλα + π =
√

2 + π
(
1 +

2

λα

)
.

This is because one of the functions is increasing in λα and the other function is decreasing in λα ,
and the maximum of the minimum of these two function over (α , λ) ∈ (0, 1)× (0,∞) is at the point
when these two functions are equal.

Hence, by (21), we have

C (α , λ) ≤ C̄ (α , λ) ≤ 4.2154 × 1{0<α<1/2} + 2.2675 × 1{1/2≤α<1} ≤ 4.2154,

which clearly implies that C (α , λ) is uniformly bounded by 4.2154 over (0, 1) × (0,∞). �

ThisC (α , λ) is uniformly bounded by 4.2154 over all combinations of the parameters. When the
stability parameter α is between 1/2 and 1, the upper bound can be reduced to 2.2685. In principle,
the uniform bound provided in Theorem 3.1 is the bound for C̄ (α , λ), which is the upper bound of
C (α , λ), whereas the actual bound of C (α , λ) is much smaller than this uniform bound.

Remark 3.1. Given C (α , λ) in (20), when holding λ fixed, we have

lim
α→0

C (α , λ) = lim
α→0

C1 (α , λ) = lim
α→0

e−1

(
1 +

1

(1 − α )λα

)λα+1

=
4

e
,

lim
α→1

C (α , λ) = lim
α→1

C2 (α , λ) = lim
x→0

Γ(x + 1)x−xex = 1,

and

lim
λ→0

C (α , λ) = lim
λ→0

C2 (α , λ) = lim
x→0

Γ(x + 1)x−xex = 1,

lim
λ→∞

C (α , λ) ≤ lim
λ→∞

C̄ (α , λ) = min
α ∈(0,1)

{√
1/α ,

√
1/1 − α

}
≤
√

2,

while holding α fixed. Figure 2 shows the value ofC (α , λ) for various values of α and λ. The calcu-
lated maximum it attains for those values is about 2.5. This actual bound for C (α , λ) we observed
is much smaller than the one we discovered in Theorem 3.1.

In fact, thisC (α , λ) is indeed the complexity of the scheme that optimally combines the four two-
dimensional SR algorithms with different envelopes and implements the most efficient algorithm
by choosing the one with the smallest A/R constant to sample the ETS random variable Sα,λ . The
overall complexity of Algorithm 3.1 isC (α , λ) in (20), which, according to Theorem 3.1, is uniformly
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Fig. 1. Algorithm active regions. The blue region represents C (α , λ) = C1 (α , λ), the green region represents

C (α , λ) = C2 (α , λ), the yellow region represents C (α , λ) = C3 (α , λ), and the red region represents C (α , λ) =
C4 (α , λ).

bounded by 4.2154. Apparently, the complexity is smaller than 8.1133, which is the complexity of
the DR scheme [Devroye 2009], and the relevant numerical comparison tests of these algorithms
will be illustrated in Section 5. Figure 1 represents the plot of the regions over (0, 1)× (0,∞) where
each of the two-dimensional SR algorithms suggested in Algorithm 3.1 will be active. We can see
that for α close to 0, the two-dimensional SR algorithm withC1 (α , λ) will be active, and for α close
to 1, or λ close to 0, the two-dimensional SR algorithm with C3 (α , λ) will be active. When λ is
getting large, depending on the size of α , one of the two-dimensional SR algorithms withC2 (α , λ)
andC4 (α , λ) will be active. The limits forC (α , λ) provided in Remark 3.1 clearly explain these facts.

4 SIMULATION FOR GTS DISTRIBUTION

Beside the ETS class, the GTS distribution is another interesting class of tilted stable distributions.
The GTS, denoted by Gα,λ,ν , was first introduced by Barndorff-Nielsen and Shephard [2001], and
its density is defined as

f (s ) =
sνe−λs fα (s )

G (ν , λ)
, s ∈ R+, (23)

where ν > 0, and G (ν , λ) =
∫ ∞

0
yνe−λy fα (y)dy, and fα (·) is the density of the positive stable

variable Sα in (2). Based on the two-dimensional SR method and the gamma-uniform envelope
and the gamma and truncated-normal envelope for the ETS, we can also develop a simulation
scheme to sample the GTS variables. The details are provided in Algorithm 4.1.

Proof. Given X = λGα,λ,ν , the bivariate density of (X ,U ) on [0,∞) × [0,π ] is given by

f (x ,u) =
αλ−νeλα

G (ν , λ)π (1 − α )
B (u)

1
1−α λ

α

1−α x−
1

1−α
+ν exp

(
−B (u)

1
1−α λ

α

1−α x−
α

1−α − x
)
. (24)
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ALGORITHM 4.1: Scheme for Simulating GTS Gα,λ,ν

(1) set R1 = Erf
(√

α (1 − α )λαπ 2/2
)
, R2 = Erf

(
π
√

(1 − α ) (αλα − ν )/2
)

(2) set G1 =
eα λ

α −1

(α λα )λα

(
α+α (1−α )λα

1−α

)λα (1−α )+1
, G2 =

e (1−α )λα (1−α )
(1−α )ν

α α
ν

(1−a)(1−α )λα
λα (1−α )λα ,

G3 =
λ−α

2
λ

α +α e−1+α λ
α

α−α λ
α +1 (1−α )−1−(1−α )λα

√
2π α (1−α )λα (1/λα+(1−α ))−1−(1−α )λα , G4 =

e (1−α )λα
(1−α )

(1−α )ν
α α ν

√
2π α (1−α )λα

√
1−ν /[α λα ]((1−α )λα )(1−α )λα

,

C̄1 = Γ(αλα + ν )λ−νG1, C̄3 = Γ(αλα + ν )λ−νG3,

C̄2 = Γ ((1 − α )λα − (1 − α )ν/α + 1)G2, and C̄4 = Γ ((1 − α )λα − (1 − α )ν/α + 1)G4

(3) if
(
{C̄1 = min{C̄1, C̄2, C̄3, C̄4},ν < αλα } or {C̄1 = min{C̄1, C̄3},ν ≥ αλα }

)
{

(4) repeat{

(5) sample U ∼ U[0,π ], X ∼ Γ(αλα + ν , 1), V ∼ U[0, 1]; set G = X/λ

(6) if

(
V ≤ αeλ

α

G1 (1−α )B (U )
1

1−α λ
α

1−α X−
α

1−α
−α λα

e−B (U )
1

1−α λ
α

1−α X −
α

1−α

)
break

(7) }

(8) }

(9) if
(
C̄2 = min{C̄1, C̄2, C̄3, C̄4}, ν < αλα

)
{

(10) repeat{

(11) sample U ∼ U (0,π )

(12) sample Z ∼ Γ((1 − α )λα − (1 − α )ν/α + 1, 1), V ∼ U[0, 1]; set G = B (U )
1
α Z−

1−α

α

(13) if (V ≤ eλα

B (U )
ν

α Z−(1−α )λα

e−λB (U )
1
α Z−

1−α
α /G2) break

(14) }

(15) }

(16) if
(
C̄3 = min{C̄1, C̄2, C̄3, C̄4}, ν < αλα } or {C̄3 = min{C̄1, C̄3}, ν ≥ αλα }

)
{

(17) repeat{

(18) sample U ∼ N
(
μ = 0,σ 2 = [α (1 − α )λα ]−1, lb = 0, ub = π

)
(19) sample X ∼ Γ(αλα + ν , 1), V ∼ U[0, 1]; set G = X/λ

(20) if
��
�V ≤

R1αeλ
α

λ
α

1−α B (U )
1

1−α

G3 (1−α )
√

2π α (1−α )λα X
α

1−α
+α λα e

−
(
λB (u )

1
α X −1

) α
1−α
+

α (1−α )λα
U

2

2 ��
	 break

(21) }

(22) }

(23) if
(
C̄4 = min{C̄1, C̄2, C̄3, C̄4}, ν < αλα

)
{

(24) repeat{

(25) sample U ∼ N
(
μ = 0,σ 2 = [(1 − α ) (αλα − ν )]−1, lb = 0, ub = π

)
(26) sample Z ∼ Γ((1 − α )λα − (1 − α )ν/α + 1, 1), V ∼ U[0, 1]; set G = B (U )

1
α Z−

1−α

α

(27) if

(
V ≤ R2

G4

√
2π (1−α )(α λα−ν )Z (1−α )λα

eλα

B (U )
ν

α e−λB (U )
1
α Z−

1−α
α +

(1−α )(α λ
α −ν )U 2

2

)
break

(28) }

(29) }

(30) return G

To generate (X ,U ), we consider a bivariate envelope (X̃ , Ũ ) on [0,∞) × [0,π ] with X̃ ∼
Γ (αλα + ν , 1) and Ũ ∼ U[0,π ], and the joint density is given as

p (x ,u) =
1

π

xα λα+ν−1e−x

Γ(αλα + ν )
.
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Fig. 2. The complexity of Algorithm 3.1 for α ∈ (0, 1) and λ := − ln(1 − z) with z ∈ (0, 1).

Hence, we have

f (x ,u)

p (x ,u)
=

λ−ν Γ(αλα + ν )

G (ν , λ)

αeλα

1 − α B (u)
1

1−α λ
α

1−α x−α λα− α

1−α exp
(
−B (u)

1
1−α λ

α

1−α x−
α

1−α

)

=
λ−ν Γ(αλα + ν )

G (ν , λ)Γ(αλα )

αeλα

Γ(αλα )

1 − α B (u)
1

1−α λ
α

1−α x−α λα− α

1−α exp
(
−B (u)

1
1−α λ

α

1−α x−
α

1−α

)

≤ C1 (α , λ)λ−ν Γ(αλα + ν )

G (ν , λ)Γ(αλα )
= C̄1,

where C1 (α , λ) is defined in (11).
Alternatively, we consider a bivariate envelope (X̂ , Û ) on [0,∞) × [0,π ] such that

X̂ ∼ Γ (αλα + ν , 1) , Û ∼ N
(
μ = 0, σ 2 =

1

α (1 − α )λα
, lb = 0, ub = π

)
,

and the joint density (X̂ , Û ) is given as

q(x ,u) =
xα λα+ν−1e−x

Γ(αλα + ν )

√
2α (1 − α )λα /

√
π

Erf
(
π
√
α (1 − α )λα /2

) e− α (1−α )λα
u

2

2 .
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According to the inequality (14), we have

f (x ,u)

q(x ,u)
=

λ−ν Γ(αλα + ν ) Erf
(
π
√
α (1 − α )λα /2

)
αeλα

G (ν , λ) (1 − α )
√

2πα (1 − α )λα
B (u)

1
1−α λ

α

1−α x−
α

1−α
−α λα

× exp

(
−B (u)

1
1−α λ

α

1−α x−
α

1−α +
α (1 − α )λαu2

2

)

=
λ−ν Γ(αλα + ν )

G (ν , λ)Γ(αλα )

Erf
(
π
√
α (1 − α )λα /2

)
αeλα

Γ(αλα )

(1 − α )
√

2πα (1 − α )λα
B (u)

1
1−α λ

α

1−α x−
α

1−α
−α λα

× exp

(
−B (u)

1
1−α λ

α

1−α x−
α

1−α +
α (1 − α )λαu2

2

)

≤ C3 (α , λ)λ−ν Γ(αλα + ν )

G (ν , λ)Γ(αλα )
= C̄3, (25)

which is the associated A/R constant.
For ν < αλα , if we set

Z = B (U )
1

1−α λ
α

1−α X−
α

1−α ,

then the joint density of (Z ,U ) on [0,∞) × [0,π ] is

f (z,u) =
eλα

G (ν , λ)π
B (u)

ν

α z−
(1−α )ν

α exp
(
−z − λB (u)

1
α z−

1−α

α

)
. (26)

Hence, to generate (Z ,U ), we could choose a bivariate envelope (Z̃ , Ũ ) on [0,∞) × [0,π ] with
density

p̃ (z,u) =
z (1−α )λα− (1−α )ν

α e−z

πΓ
(
(1 − α )λα − (1−α )ν

α
+ 1

) ,
and we have

f (z,u)

p̃ (z,u)
=

Γ
(
(1 − α )λα − (1−α )ν

α
+ 1

)
eλα

G (ν , λ)
B (u)

ν

α z−(1−α )λα

exp
(
−λB (u)

1
α z−

1−α

α

)

≤
Γ

(
(1 − α )λα − (1−α )ν

α
+ 1

)
e (1−α )λα

G (ν , λ)
λ−α (1−α )λα

αα λα
[
(1 − α ) (1−α )αα

]− α λ
α −ν

α

≤
C2 (α , λ)Γ

(
(1 − α )λα − (1−α )ν

α
+ 1

)
αν (1 − α )

(1−α )ν
α

G (ν , λ)Γ((1 − α )λα + 1)
= C̄2, (27)

where C2 (α , λ) is defined in (18).
Alternatively, we could choose a bivariate envelope (Ẑ , Û ) on [0,∞) × [0,π ] with density

q̂(z,u) =
z (1−α )λα− (1−α )ν

α e−z

Γ
(
(1 − α )λα − (1−α )ν

α
+ 1

)
√

2

Erf
(
π/
√

2σ 2
) √

πσ 2
e−

u
2

2σ 2 ,

with σ 2 = [(1 − α ) (αλα − ν )]−1—that is, we have

Ẑ ∼ Γ

(
(1 − α )λα − (1 − α )ν

α
+ 1, 1

)
,

Û ∼ N
(
μ = 0, σ 2 =

1

(1 − α ) (αλα − ν )
, lb = 0, ub = π

)
.
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Hence, according to the inequality (19), we have

f (z,u)

q̂(z,u)
=

Erf
(
π
√

(1 − α ) (αλα − ν )/2
)

Γ
(
(1 − α )λα − (1−α )ν

α
+ 1

)
G (ν , λ)

√
2π (1 − α ) (αλα − ν )

× eλα

B (u)
ν

α z−(1−α )λα

exp

(
−λB (u)

1
α z−

1−α

α +
(1 − α ) (αλα − ν )u2

2

)

≤
Erf

(
π
√

(1 − α ) (αλα − ν )/2
)

Γ
(
(1 − α )λα − (1−α )ν

α
+ 1

)
G (ν , λ)Γ((1 − α )λα + 1)

√
2π (1 − α ) (αλα − ν )

× (1 − α )
(1−α )ν

α αν Γ((1 − α )λα + 1) (1 − α )−(1−α )λα

λ−α (1−α )λα

e (1−α )λα

≤
C4 (α , λ)Γ

(
(1 − α )λα − (1−α )ν

α
+ 1

)
(1 − α )

(1−α )ν
α αν

G (ν , λ)Γ((1 − α )λα + 1)
√

1 − ν
α λα

= C̄4,

where C̄4 is the associated A/R constant. In general, given parameters α , λ,ν , we choose the enve-
lope with the smallest A/R constant to generate Gα,λ,ν . A combination of these four simulation
schemes leads to a more efficient algorithm. �

In general, the additional parameter ν for the GTS distributions makes analyzing the complexity
of Algorithm 4.1 more challenging, as the analytical form forG (ν , λ) is unknown. In the literature,
the only existing algorithm for GTS distributions is the decomposition scheme (DS) proposed
by Favaro et al. [2015]. The relevant numerical comparison tests between Algorithm 4.1 and the
DS [Favaro et al. 2015] will be illustrated in Section 5.

5 NUMERICAL VERIFICATION AND COMPARISON

In this section, we provide numerical examples for sampling two families of tilted stable distribu-
tions: ETS and GTS distributions. The simulation experiments are all conducted on a normal lap-
top with the Intel Core i7-6500U CPU@2.50-GHz processor, 8.00 GB of RAM, Windows 10 Home,
and a 64-bit operating system. The algorithms are coded and performed in R.3.4.2, and comput-
ing time is measured by the elapsed CPU time in seconds. Numerical validation and tests for the
ETS algorithm are based on the probability density function (PDF), cumulative distribution

function (CDF), and quantiles of Sα,λ , which can be obtained by inverting Laplace transform (3)
numerically. For the GTS simulation scheme, verifying via the CDF, PDF, and quantiles are non-
executable, as its closed-form Laplace transform is not available. So we establish comparison tests
for the empirical CDFs, PDFs, and quantiles generated by Algorithm 4.1 and by the DS of Favaro
et al. [2015].

For Algorithm 3.1 of ETS distributions, the plots of CDFs and PDFs under parameter settings
α = 0.3, 0.6, λ = 1.0, 5.0 are provided in Figure 3. The Q-Q plots for the empirical quantiles of
Sα,λ against the corresponding theoretical quantiles are presented in Figure 4, and the associated
results in detail are reported in Table 1. We can see that our algorithm can achieve a very high level
of accuracy, and the simulated CDFs, PDFs, and quantiles are fitted pretty well to the associated
numerical inversions. There are a variety of available algorithms for numerically inverting Laplace
transforms with high accuracy in the literature, such as Gaver [1966], Stehfest [1970], and Abate
and Whitt [1992, 1995, 2006], to name a few. Here, we adopt the classical Euler scheme as described
in Abate and Whitt [2006, Section 5, pp. 415-416].

To investigate the performance of our SR scheme for the ETS, we made a comparison of the
CPU time for Algorithm 3.1 against the DR scheme for simulating 100,000 samples under the
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Fig. 3. Comparison of the empirical CDF/PDF for the SR scheme (via Algorithm 3.1) of Sα,λ with the

CDF/PDF obtained via numerical inverse the Laplace transform of (3).

Table 1. Comparison of the Empirical Quantiles of Sα,λ for the SR Scheme (via Algorithm 3.1) Against the

Theoretical Quantiles of Sα,λ Approximated via Numerical Inverse the Laplace Transform of (3)

Quantile 10% 20% 30% 40% 50% 60% 70% 80% 90%

α = 0.3 λ = 1

2D SR 0.0172 0.0342 0.0566 0.0877 0.1299 0.1912 0.2874 0.4451 0.7754
Numerical Inverse 0.0173 0.0342 0.0567 0.0877 0.1303 0.1913 0.2873 0.4452 0.7756

α = 0.6 λ = 5

2D SR 0.1592 0.1905 0.2185 0.2466 0.2773 0.3125 0.3558 0.4163 0.5181
Numerical Inverse 0.1592 0.1905 0.2184 0.2466 0.2772 0.3125 0.3562 0.4163 0.5182

parameter settings α ∈ {0.05, 0.1, . . . , 0.9, 0.99} and λ ∈ {0.01, 0.1, . . . , 106}. The numerical results
are reported in Table 2. We can see that our SR scheme performs well for all combinations of α
and λ. The out-performance of our algorithm would even become much more substantial when
α is close to 0. For example, it is about eight times faster than the DR scheme when α = 0.05. In
addition, Algorithm 3.1 is also very fast when the tilting parameter λ is not very large, which clearly
indicates that the acceptance rate of Algorithm 3.1 is higher than the DR scheme [Devroye 2009]
for a small tilting parameter λ. Based on the DR scheme, Hofert [2011b] proposed a more efficient
sampling algorithm for ETS distributions by combining the FR scheme with the DR scheme. Since
the SR scheme outperforms the DR scheme over all combinations of parameters, the combination
algorithms of Hofert [2011b] can be further improved by combining the SR scheme with the FR
scheme.
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Fig. 4. Q-Q plots with the vertical axis being the empirical quantiles of Sα,λ for the SR scheme (via

Algorithm 3.1) and the horizonal axis being the theoretical quantiles of Sα,λ approximated via numerical

inverse the Laplace transform of (3).

Table 2. Comparison of CPU Time for Generating 100,000 Samples Based on the SR Scheme

(via Algorithm 3.1) and the DR Scheme [Devroye 2009], Respectively

α
λ

0.01 0.10 1.00 10 100 1,000 10,000 100,000 1,000,000

SR DR SR DR SR DR SR DR SR DR SR DR SR DR SR DR SR DR
0.05 2.58 18.35 2.33 18.80 2.36 19.05 2.42 19.24 2.23 18.62 2.22 19.09 2.47 18.79 2.32 18.59 2.45 18.16
0.10 2.51 19.36 2.67 18.92 2.56 18.36 2.47 18.14 2.62 18.08 4.44 17.98 3.96 17.71 4.08 17.3 3.44 16.78
0.20 2.33 18.72 2.53 20.44 5.22 18.26 4.51 17.16 3.86 16.31 3.50 15.43 3.58 9.43 3.22 6.91 3.05 5.18
0.30 2.02 19.23 2.36 18.16 4.45 17.54 4.50 15.93 3.95 14.14 3.21 6.84 3.30 4.98 3.21 4.39 2.69 4.07
0.40 1.93 18.69 2.35 18.29 4.03 18.61 3.86 14.97 3.69 7.19 3.78 4.69 3.47 4.64 3.19 4.12 2.76 4.21
0.50 1.73 19.55 1.94 18.53 3.59 17.08 3.50 13.73 3.22 5.14 3.11 4.46 3.36 4.23 3.53 3.95 3.69 4.02
0.60 1.56 18.66 1.97 19.05 3.65 18.47 3.28 13.97 3.39 4.75 3.19 4.22 3.00 4.19 3.49 4.03 3.17 4.03
0.70 1.61 18.50 1.76 18.81 3.46 17.88 3.17 9.28 3.01 4.50 3.11 4.32 3.19 4.23 3.34 3.97 3.25 4.08
0.80 1.84 18.53 1.83 18.49 3.45 18.42 2.94 9.33 2.92 4.52 2.38 4.47 3.17 4.81 3.31 3.92 3.07 4.24
0.90 1.78 18.45 1.59 18.96 1.70 18.62 2.90 14.73 2.76 4.46 2.39 4.55 2.84 4.78 2.94 4.00 2.86 4.97
0.99 1.50 17.81 1.54 18.00 1.62 18.86 1.88 18.44 3.14 13.94 2.28 4.41 2.64 4.69 3.02 4.06 2.83 4.21

The comparison of empirical CDFs and CDFs for Algorithm 4.1 and the DS under various combi-
nations of (α , λ,ν ) are illustrated in Figure 5. We also present the comparison of empirical quantiles
in Figure 6 and report the associated results in Table 3. We can see that these two algorithms are
closely matched in terms of CDF, PDF, and quantiles. Note that Algorithm 4.1 also has one special
feature—that is, it can be used to sample Gα,λ,ν for a negative ν such that ν > −αλα . Figure 7
demonstrates the distributional behavior of this special class of GTS via its PDFs.

Meanwhile, we have also compared the simulation time for Algorithm 4.1 against the DS over
a large range of values of α , λ,ν , and explore how the efficiency depends on them. The related
numerical results are listed in Table 4. We see that our scheme is more efficient for most parameter
settings provided in Table 4, especially for large values of α , λ. For example, Algorithm 4.1 is
extraordinarily fast whenα = 0.6 and λ = 1, 000. In general, our proposed algorithm is significantly
more efficient for a large range of parameter combinations. The key reason is that our SR scheme
is developed independently and generates the GTS random variable directly without using the DR
or FR method. This leads to a more straightforward procedure for implementation. In fact, the DS
can be improved by generating the ETS random variable using our Algorithm 3.1, which would
then speed up the entire simulation for the GTS random variable.
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Fig. 5. Comparison of the empirical CDF/PDF for Algorithm 4.1 against the DS [Favaro et al. 2015].

Table 3. Comparison of the Empirical Quantiles of Gα,λ,ν for Algorithm 4.1 Against the DS

[Favaro et al. 2015]

Quantile 10% 20% 30% 40% 50% 60% 70% 80% 90%

ν = 0.5 α = 0.3 λ = 10

Algo. 4.1 0.0164 0.0271 0.0384 0.0510 0.0660 0.0840 0.1079 0.1420 0.2013
DS 0.0165 0.0272 0.0384 0.0509 0.0660 0.0844 0.1079 0.1419 0.2012

ν = 1.5 α = 0.5 λ = 15

Algo. 4.1 0.0871 0.1081 0.1263 0.1441 0.1632 0.1849 0.2107 0.2451 0.3001
DS 0.0871 0.1083 0.1263 0.1443 0.1631 0.1849 0.2107 0.2450 0.3001

ν = 2.5 α = 0.7 λ = 20

Algo. 4.1 0.2353 0.2583 0.2776 0.2955 0.3138 0.3336 0.3566 0.3861 0.4315
DS 0.2352 0.2583 0.2779 0.2954 0.3140 0.3334 0.3569 0.3862 0.4312
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Fig. 6. Q-Q plots with the vertical axis being the empirical quantiles of Gα,λ,ν for Algorithm 4.1 and the

horizonal axis being the empirical quantiles of Gα,λ,ν for DS [Favaro et al. 2015].

Fig. 7. PDFs of GTS with ν < 0.

Table 4. Comparison of CPU Time for Generating 100,000 Samples Based on Algorithm 4.1

and the DS [Favaro et al. 2015], Respectively

ν = 1 ν = 1.5 ν = 2 ν = 2.5 ν = 3 ν = 3.5 ν = 4
λ Algo 4.1 DS Algo 4.1 DS Algo 4.1 DS Algo 4.1 DS Algo 4.1 DS Algo 4.1 DS Algo 4.1 DS

α = 0.2
10 4.35 6.89 4.56 8.31 4.81 12.57 5.45 12.44 5.67 16.17 5.75 16.71 5.95 20.77
100 3.68 7.48 3.76 7.81 4.15 12.19 4.56 12.84 4.54 17.58 4.82 16.80 4.75 21.02

1,000 3.25 7.22 3.35 8.07 3.43 12.33 3.45 13.05 3.92 16.76 4.23 18.12 4.35 21.72

α = 0.4
10 4.43 7.02 4.67 7.98 5.56 12.97 6.43 13.95 6.89 17.14 7.80 17.70 8.64 21.11
100 3.35 6.88 3.56 7.79 3.65 12.89 4.22 13.08 4.77 16.97 5.23 16.64 5.54 21.01

1,000 3.28 6.81 3.49 8.88 3.34 11.89 3.54 13.88 3.53 16.31 3.89 18.14 4.23 21.00

α = 0.6
10 5.53 7.27 5.42 7.89 6.32 12.89 7.35 13.00 8.23 16.89 10.08 17.16 11.82 21.49
100 3.23 6.72 4.23 12.28 4.13 12.08 4.23 14.22 4.13 16.44 4.56 17.64 5.23 20.89

1,000 3.44 7.73 3.45 1540.32 3.25 12.16 3.62 186.15 3.15 16.52 3.86 54.73 3.65 20.67
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6 CONCLUSION

In this article, a new efficient simulation scheme has been developed for sampling ETS and GTS
distributions. The two important distributions appear routinely in financial applications and other
areas that heavily rely on Monte Carlo simulation. The key principle of this approach is two-
dimensional SR, which is very different from other existing schemes in the literature. The complex-
ity of our new algorithm for the ETS family is uniformly bounded over all ranges of parameters.
Remarkably, it beats all other algorithms. Our further extension for exactly sampling of the GTS
family does not rely on sampling the ETS family, and hence our algorithm for the GTS family is
more efficient than the DS (which is the only alternative algorithm in the literature). For future re-
search, our algorithms can be adopted for further generating ETS-driven or GTS-driven stochastic
processes as mentioned early in Section 1, which could lead many simulation-based applications.
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